
Homework - Chapter 11

Tracy Holsclaw

July 2013

1 Problem 1

I am including the R code for generating the Example in class with X (water depth) and Y
(water temperature). Usually the data (X,Y) would be collected from a study. But for the
point of a clean example, I generated this data so I know it is Normally distributed. The >
is the command prompt in R. The pound sign is used for comments.

> set.seed(154) # set the random number generator seed

> n=50 # set the number of observations

> b0=50 # set b0 to generate data

> b1=-.002 # set b1 to generate data

> x=seq(1,10000,length=n) #generate an evenly spaced sequence of X (water depth)

> y=b0+b1*x+rnorm(n,0,sd=3) #generate the mean fit b0+b1*x and add random Normal noise

> # rnorm() to get randomly generated Y (water temperature)

> x

[1] 1.0000 205.0612 409.1224 613.1837 817.2449 1021.3061 1225.3673 1429.4286

[10] 1837.5510 2041.6122 2245.6735 2449.7347 2653.7959 2857.8571 3061.9184 3265.9796

[19] 3674.1020 3878.1633 4082.2245 4286.2857 4490.3469 4694.4082 4898.4694 5102.5306

[28] 5510.6531 5714.7143 5918.7755 6122.8367 6326.8980 6530.9592 6735.0204 6939.0816

[37] 7347.2041 7551.2653 7755.3265 7959.3878 8163.4490 8367.5102 8571.5714 8775.6327

[46] 9183.7551 9387.8163 9591.8776 9795.9388 10000.0000

> y

[1] 51.66951 43.86143 52.79129 51.69816 47.24592 48.07322 47.94730 50.27228 47.70287 40.53796

[12] 40.69745 48.87059 45.29188 43.60320 40.90172 41.09186 46.32451 45.89228 47.65380 38.33035

[23] 44.56249 40.71576 42.63473 39.45306 40.58191 39.73388 35.68130 34.06277 32.11162 39.87508

[34] 38.71599 34.65571 37.13193 31.76396 33.79624 32.78296 38.14314 31.39671 40.76280 36.85183

[45] 31.68024 27.77360 28.64064 33.12556 26.22646 30.30604

We can go ahead and plot X and Y. There are a few extra parameters in the plot function
that I like to use. xlab and ylab are used to label the axis. If you ever want to look up a
built in R function, you can just append a question mark to the front of the function (?plot)

> par( mar=c(4,4,1,1))

> plot(x,y, xlab="Water Depth (X)", ylab="Water Temperature (Y)") #plot x vs y
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A) The regression assumptions include that the Y values are independent, the variance
is constant for all values of X, the regression is linear, and the noise of Y after fitting the
mean (regression curve) is Normally distributed. If we did not know how the data was
generated (pretend this is real data you collected) which of these can we assess at this point
in the analysis?

Next we run the regression using the built in R function for linear modeling (lm). I am
calling the object created by the lm function “my.reg”. The summary function is used to
give a summary table for the object created by lm.

> my.reg=lm(y~x)

> summary(my.reg)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-5.9824 -2.4945 0.2309 2.3904 7.4308

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 50.231557 0.882153 56.94 <2e-16 ***

x -0.002020 0.000152 -13.29 <2e-16 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 3.165 on 48 degrees of freedom

Multiple R-squared: 0.7862, Adjusted R-squared: 0.7818

F-statistic: 176.5 on 1 and 48 DF, p-value: < 2.2e-16
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B) What is the point estimate for β0 and β1?
C) What is the p-value for β0? What is it testing?
D) What is the p-value for β1? What is it testing?
E) What is the distribution used to obtain these p-values?
F) What is the R2? What is the interpretation? Does this say anything about how linear
the relationship is?
G) What is the mean fit of the regression in terms of X?
H) What would be the best point estimate for the temperature at water depth 4000?
I) What would be the best point estimate for the temperature at water depth 15000?

We plot the X and Y. Then we want to use the mean fit (sample mean) for the regression
and plot it as a line through the data. The object my.reg has some properties, you can
see the properties by using the function “names”, try names(my.reg). I already know the
property we want is fitted.values(), which gives the mean fit for each x value. We connect
these points with the lines() plotting function. plot() is used first and then lines() are added
to it.

> plot(x,y, xlab="Water Depth (X)", ylab="Water Temperature (Y)") #plot x vs y

> lines(x,fitted.values(my.reg))
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J) What was minimized to get this “best” fitting line through the data points?

Next we want to add the 95% confidence bands to the mean fit in red (col=2 in the plot
function) and 95% bands for the data in blue (col=4). The default color used is black
(col=1). R tends to throw out warning messages with the predict.lm function, in this case
they are not important.

> plot(x,y, xlab="Water Depth (X)", ylab="Water Temperature (Y)") #plot x vs y

> lines(x,fitted.values(my.reg))

> lines(x,predict.lm(my.reg,interval="confidence")[,2], col=2)
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> lines(x,predict.lm(my.reg,interval="confidence")[,3], col=2)

> lines(x,predict.lm(my.reg,interval="prediction")[,2], col=4)

> lines(x,predict.lm(my.reg,interval="prediction")[,3], col=4)
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K) How many points should be outside the blue lines on a 95% confidence band if there
are n=50 data points?
L) How many points do you observe outside the blue lines for this one randomly generated
data set?

At this point we want to plot and check the residuals. The residuals tell us the most about
the assumptions of the regression and we can see if any of the assumptions are violated.
Residuals are calculated by taking the difference between the observed Y and the mean
fitted line at the same X location

> resid=y-fitted.values(my.reg) #or resid(my.reg) will give them automatically

We include three possible residual plots: a X vs residual plot, a histogram of the residuals,
and a QQ-plot of the residuals. (The par() function sets the plotting parameters and we
want three plots to show up with 1 row and 3 columns, so the figures are in a line.)

> par(mfrow=c(1,3), mar=c(4,4,1,1))

> plot(x,resid)

> hist(resid)

> qqnorm(resid)

> qqline(resid)
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M) What assumption are we assessing in the first residual plot?
N) What assumption are we assessing in the second residual plot?
O) What assumption are we assessing in the third residual plot?
P) How do we feel about the regression assumptions at this point? Was this regression
analysis we performed valid?

2 Problem 2

We want to look at the square footage of a house (X) and its selling price (Y). We have
some data in a text file; the first column is X and the second is Y. The square footage is
divided by 100 and the selling price is divided by 1000 just so the numbers are not as large.

> infile="C://Documents and Settings//Owner//Desktop//Statistics67//Notes//9-Chapter11//Hmwk

> data=read.table(infile)

> x=data[,1]

> o1=order(x) #find the order of the x

> x=sort(x) #re-order the x from highest to lowest (makes plots nice)

> x

[1] 12.3 12.5 14.0 14.3 14.8 16.5 16.7 18.0 19.0 20.0 20.2 20.5 22.0 24.3 27.5

> y=data[o1,2] #order the y data, so it lines up with the x data

> y

[1] 78.5 56.9 74.3 82.5 79.9 79.3 74.8 66.6 120.8 89.5 87.6 83.1 112.6 119.9 126.3

> plot(x,y, xlab="Square Footage (X)", ylab="Selling Price (Y)") #plot x vs y
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A) What assumptions can we assess at this point in the regression?

> my.reg=lm(y~x)

> summary(my.reg)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-21.568 -8.713 1.286 7.990 28.754

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.3538 14.8077 1.239 0.237080

x 3.8786 0.7936 4.887 0.000297 ***

---

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 13 on 13 degrees of freedom

Multiple R-squared: 0.6476, Adjusted R-squared: 0.6204

F-statistic: 23.89 on 1 and 13 DF, p-value: 0.0002968

B) What is the point estimate for β0 and β1?
C) What is the p-value for β0? What is it testing?
D) What is the p-value for β1? What is it testing?
E) What is the distribution used to obtain these p-values?
F) What is the R2? What is the interpretation? Does this say anything about how linear
the relationship is?
G) What is the mean fit of the regression in terms of X?
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H) What would be the best point estimate for the price of a house with square footage 19?
I) What would be the best point estimate for the price of a house with square footage 50?

> plot(x,y, xlab="Square Footage (X)", ylab="Selling Price (Y)") #plot x vs y

> lines(x,fitted.values(my.reg))
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J) What was minimized to get this “best” fitting line through the data points?

> plot(x,y, xlab="Square Footage (X)", ylab="Selling Price (Y)") #plot x vs y

> lines(x,fitted.values(my.reg))

> lines(x,predict.lm(my.reg,interval="confidence")[,2], col=2)

> lines(x,predict.lm(my.reg,interval="confidence")[,3], col=2)

> lines(x,predict.lm(my.reg,interval="prediction")[,2], col=4)

> lines(x,predict.lm(my.reg,interval="prediction")[,3], col=4)
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K) How many points should be outside the blue lines on a 95% confidence band if there
are n=50 data points?
L) How many points do you observe outside the blue lines for this one randomly generated
data set?

> resid=y-fitted.values(my.reg) #or resid(my.reg) will give them automatically

> resid

1 2 3 4 5 6 7 8

12.440023 -9.935687 1.646486 8.682921 4.143645 -3.049891 -8.325602 -21.567718 28.753731

10 11 12 13 14 15

-6.424820 -9.100530 -14.764095 8.918078 7.297411 1.286048

> par(mfrow=c(1,3))

> plot(x,resid, main="Residuals")

> hist(resid)

> qqnorm(resid)

> qqline(resid)
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M) What assumption are we assessing in the first residual plot?
N) What assumption are we assessing in the second residual plot?
O) What assumption are we assessing in the third residual plot?
P) How do we feel about the regression assumptions at this point? Was this regression
analysis we performed valid?

3 Problem 3

We show some different scenarios of data (X,Y), determine whether the assumptions for
linear regression are met.
A) We collect the height (X) and weight (Y) of 100 randomly selected people.
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B) We collect the height (X) and weight (Y) of 8 families. Each family has four members.
We plot each family in a different color.
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C) We collect the height (X) and weight (Y) of 40 people. We choose specific heights of
interest and randomly collect 5 people with that height and take their weight measurement.
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D) We collect the height (X) and weight (Y) of 100 randomly selected people.
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4 Extra Credit

Part 1:
You can get extra credit for doing this next problem. It is extra as you need to use statis-
tical software. R is the statistics package that I have been using in this homework. It is
free and can be downloaded at: http://cran.r-project.org/. The data set is from the UCI
Machine Learning repository. http://archive.ics.uci.edu/ml/datasets/Auto+MPG We will
use column 5 which is the weight of vehicles as our X and column 1 which is miles per gallon
(mpg) for our Y. We will study how the weight of a car affect its miles per gallon?

The infile syntax I am using is for Windows. For Unix it is infile=”C:\Documents and
Settings\Owner\Desktop\Statistics67\Notes\9-Chapter11\Hmwk\data2.txt”You will have
to set the correct pathname and file syntax to read in the file. I am providing the first few
lines of code to help open the text file and order x and y. The ordering and sorting is so
the plotting functions will look good.

> infile="C://Documents and Settings//Owner//Desktop//Statistics67//Notes//9-Chapter11//Hmwk

> data=read.table(infile)

> x=data[,5] #use the 5th column of data (weight of the vehicle)

> o1=order(x) #find the order of the x

> x=sort(x) #re-order the x from highest to lowest (makes plots nice)

> y=data[o1,1] #order the y data, so it lines up with the x data, use the first column of

Provide output for:
1. Plot the data and 95% bands.
2. Perform a regression analysis - provide a summary Table.
3. Do some residual plots.
Write answers for:
4. Is there a linear relationship between the weight of a vehicle (X) and mpg (Y)?
5. Are the assumptions of the regression met (they are close enough, but which ones might
be somewhat questionable)?

Part 2:
Generate some data. I chose the number 400 to set the seed of the random number generator.
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Change this number to anything (DO NOT USE 400). (This should be different from anyone
elses number in the class, so your data will be different from everyone elses.)

> set.seed(400) # set the random number generator seed

> n=20 # set the number of observations

> b0=50 # set b0 to generate data

> b1=-.002 # set b1 to generate data

> x=seq(1,10000,length=n) #generate an evenly spaced sequence of X (water depth)

> y=b0+b1*x+rnorm(n,0,sd=3) #generate the mean fit b0+b1*x and add random Normal noise

Provide output for:
What number did you use to set the seed?
1. Plot the data and 95% bands.
2. Perform a regression analysis - provide a summary Table.
3. Do some residual plots.
Write answers for:
4. Is there a linear relationship between X and Y?
5. Are the assumptions of the regression met (they are close enough, but which ones might
be somewhat questionable)?

5 Solutions

5.1 Problem 1

A) The sample is random, so the assumption about independence is met. The variance for
small values of X seems to be the same as for large values of X. For example, X near zero has
a range of 42 to about 55 which is a range of about 13. At X near 8000 the range is about
32 to about 43 which is a range of about 11. It seems that the variance is pretty constant
across all ranges of X. We cannot say much at this time about the Normal distribution
property and if that assumption is valid.
B) β̂0 = 50.23 and β̂1 = −0.00202
C) The p-value is less than 2 ∗ 10−16. It is testing the hypothesis that the intercept of the
regression (where the mean regression line crosses the y-axis) is zero
D) The p-value is less than 2 ∗ 10−16. It is testing the hypothesis that the slope of the re-
gression line is zero. In practical terms, it is testing if there is no linear relationship between
water depth and water temperature. This is a small p-value, so we fail to retain H0 and
conclude that water temperature is related to water depth.
E) t-distribution for β0 and β1 because we have to estimate s2. The t-value given is the test
statistic and the p-value is found from this test statistic (the computer looked it up on the
Table for you.)
F) R2 = 0.7818 (you can use either R2). R2 represents the percent variation in Y that can
be explained by the regression model (changes in X.) In this case the R2 is pretty high,
so the changes in X explains about 80% of the change in Y, the part X cannot explain
is random noise. R2 can only be used on linear relationships and does not tell us if the
relationship is linear. G) ŷ = β̂0 + β̂1X = 50.23− 0.00202 ∗X
H) ŷ = 50.23− 0.00202 ∗ (4000) = 42.15
I) ŷ = 50.23− 0.00202 ∗ 15000 = 19.93, while we can find this value, it is not valid. The X
range is only from 0 to 10000. 15000 is well outside this range and we cannot accurately
comment on what will happen at a depth X we have no data around.
J) Sum of the squares of the errors.
K) .05*50=2.5, we would expect to see around 2 or 3 points outside the blue bands.
L) one outside and few very near or one the blue bands, this is pretty close to our estimate
of 2-3.
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M) constant variance
N) Normality
O) Normality
P) The second and third residual plot are a bit weak on the Normality but this is a small
sample of n = 50. Since this is simulated data we know the actual underlying assumptions
are valid. There is random noise in the model and so no residual plots are perfect but they
can be close enough. The bins on the histogram can occasionally be misleading with small
data sets. The constant variance and Normality assumption (especially in the QQplot) seem
reasonable. The Normality assummption might be questioned because of residual plot two.

5.2 Problem 2

A) The sample is random, we are not taking multiple measures of the same houses and we
are assuming it is random, so we do not have clusters of houses from good or bad neigh-
borhoods that might be correlation. The assumption about independence seems to be met.
We cannot comment on Normality at this time. The relationship seems linear, eventhough
there is little data. And there is no reason to question the constant variance assumption.
B) β̂0 = 18.36 and β̂1 = 3.879
C) p-value=0.237. It is testing the hypothesis that the intercept of the regression (where
the mean regression line crosses the y-axis) is zero. We would conclude that the regression
line probably does go through the point (0,0). In practical terms, a zero square foot house
would cost zero dollars.
D) -value=0.00297. It is testing the hypothesis that the slope of the regression line is zero.
In practical terms, it is testing if there is linear relationship between square footage and
housing price. The pvalue is small, so we fail to retain H0 (reject H0) and conclude that
the square footage does related to the price of a house.
E) t-distribution for β0 and β1 because we have to estimate s2. The t-value given is the test
statistic and the p-value is found from this test statistic (the computer looked it up on the
Table for you.)
F) R2 = 0.6204 (you can use either R2). R2 represents the percent variation in Y that can
be explained by the regression model (changes in X.) In this case the R2 is pretty high,
so the changes in X explains about 62% of the change in Y, the part X cannot explain
is random noise. R2 can only be used on linear relationships and does not tell us if the
relationship is linear. G) ŷ = β̂0 + β̂1X = 18.35 + 3.8786 ∗X
H) ŷ = 18.35 + 3.8786 ∗ (19) = 92.04
I) ŷ = 18.35 + 3.8786 ∗ (50) = 212.28, while we can find this value, it is not valid. The X
range is only from 5 to 30. 50 is well outside this range and we cannot accurately comment
on what will happen if a house has 50 sqft, we have no data around that value of X.
J) Sum of the squares of the errors.
K) .05*15=0.75, we would expect to see around 0 or 1 points outside the blue bands.
L) one on the band, this is pretty close to our estimate of one.
M) constant variance, there are so few points to assess this well. But nothing obvious
enough to reject the assumption of constant variance
N) Normality
O) Normality
P) The regression assumptions seem pretty good. It can be hard to tell with such a small
sample size. But the residual plots look close to Normal and there is not enough evidence
to seriously question the non-constant variance. These things tend to be judgement calls
on the part of the person doing the analysis. After generating random data and staring at
hundreds of these plots it gets easier to distinguish between true patterns and just noise.
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5.3 Problem 3

A) violates constant variance assumption, shorter people have less weight range than tall
people. B) violates the independence assumption, people from the same family will tend to
be the same height. For example, all four members of the gray family are quite tall. And
the green family is quite a bit shorter. C) This is fine. X is a fixed quantity and not a
variable in regression. We can set specific values of X before the study if we wish. This
tends to happen often in drug studies, where several set doses of medication are used as
the X and then random patients are given specified doses. For example, a dose of 50mg
is administered to 8 people and a dose of 70mg is administered to 5 people, and a dose of
100mg is administered to 10 people. As long as the people are different for each does, this is
random. D) X and Y are not linearly related. There is a curve. We cannot fit a regression
line to this. We would need to do something more complex and fit a curve.
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